TechDogs-"FEDML Nexus AI: The Next-Gen Cloud Services For LLMs And Generative AI"

Emerging Technology

FEDML Nexus AI: The Next-Gen Cloud Services For LLMs And Generative AI

By Business Wire

Business Wire
Overall Rating

SUNNYVALE, Calif.--(BUSINESS WIRE)--Today, FEDML, a rapidly growing startup in artificial intelligence (AI), officially announced the release of FEDML Nexus AI, offering the next generation of cloud services and platform for generative AI.

As large language models (LLMs) and other generative AI applications gain prominence and global GPU demand intensifies, a wave of new GPU providers and resellers has emerged. “Developers need a way to quickly and easily find and provision the best GPU resources across multiple providers, minimize costs, and launch their AI jobs without worrying about tedious environment setup and management for complex generative AI workloads. They may even want to develop privately on their own infrastructure or in a hybrid manner. No such technology exists today,” said Salman Avestimehr, the founding CEO of FEDML and the Dean's Professor and Director of the USC-Amazon Center on Trustworthy AI at USC. “FEDML Nexus AI bridges this gap in the market and provides such capabilities to developers and enterprises.”

The multi-faceted capabilities of FEDML Nexus AI are as follows:

  • GPU Marketplace for AI Development: Addressing the current dearth of compute nodes/GPUs arising due to the skyrocketing demand for AI models in enterprise applications, FEDML Nexus AI offers a massive GPU marketplace with over 18,000 compute nodes. Beyond partnering with prominent data centers and GPU providers, the FEDML GPU marketplace also welcomes individuals to join effortlessly via our "Share and Earn" interface.
  • Unified ML Job Scheduler and GPU Manager: With a simple fedml launch your_job.yaml command, developers can instantly launch AI jobs (training, deployment, federated learning) on the most cost-effective GPU resources, without the need for tedious resource provisioning, environment setup and management. FEDML Launch supports any computing-intensive job for LLMs and generative AI, including large-scale distributed training, serverless/dedicated deployment endpoints, and large-scale similarity search in vector DB. It also enables cluster management and deployment of ML jobs on-premises, private, and hybrid clouds.
  • Zero-code LLM Studio: As enterprises increasingly seek to create private, bespoke, and vertically tailored LLMs, FEDML Nexus AI Studio empowers any developer to train, fine-tune, and deploy generative AI models code-free. This Studio allows companies to seamlessly create specialized LLMs with their proprietary data in a secure and cost-effective manner.
  • Optimized MLOps and Compute Libraries for Diverse AI Jobs: Catering to advanced ML developers, FEDML Nexus AI provides powerful MLOps platforms for distributed model training, scalable model serving, and edge-based federated learning. FEDML Train offers robust distributed model training with advanced resource optimization and observability. FEDML Deploy provides MLOps for swift, auto-scaled model serving, with endpoints on decentralized cloud or on-premises. FEDML Federate extends model training and serving to edge servers and smartphones, enhancing privacy compliance and optimizing costs. For developers looking for quick solutions, FEDML Nexus AI's Job Store houses pre-packaged compute libraries for diverse AI jobs, from training to serving to federated training.

“The AI community has made significant progress in developing new paradigms and innovative models for generative AI. However, challenges in cloud computing still hinder the productionization of these new AI models and research frameworks for native AI apps. These challenges include low availability of GPUs, high cloud costs, fragmented software stack for AI, and inefficiency in development and operations. Our latest Nexus AI is a significant step forward in addressing these challenges. It utilizes FEDML Launch, an incredibly versatile cross-cloud scheduler, to coordinate various computing frameworks for training and deployment in a unified and user-friendly manner. This not only saves developers and enterprises the time and effort of finding GPU resources and dealing with fragmented multi-stage machine learning pipelines, but also simplifies complex multi-step workflows in cutting-edge directions such as LLM-based AI agents,” said Aiden Chaoyang He, co-founder and CTO of FEDML, and an Internet veteran who is former director and principal engineer in many big techs. “Our unwavering vision is to provide superior AI infrastructure for the rapidly growing AI community. We are fortunate to have climbed this mountain starting with federated learning, where we have innovated the most complex building blocks, such as schedulers, orchestrators, and distributed systems for ML. These innovations have been further leveraged to meet the general demands of model training and deployment.”

Developers and enterprises eager to leverage the capabilities of FEDML Nexus AI can sign up now at https://nexus.fedml.ai.


Contacts

Yvonne Li
Director of Communications, FEDML
Email: yvonne@fedml.ai
Phone: +1(323)327-1774

First published on Tue, Oct 24, 2023

Enjoyed what you read? Great news – there’s a lot more to explore!

Dive into our content repository of the latest tech news, a diverse range of articles spanning introductory guides, product reviews, trends and more, along with engaging interviews, up-to-date AI blogs and hilarious tech memes!

Also explore our collection of branded insights via informative white papers, enlightening case studies, in-depth reports, educational videos and exciting events and webinars from leading global brands.

Head to the TechDogs homepage to Know Your World of technology today!

Disclaimer - Reference to any specific product, software or entity does not constitute an endorsement or recommendation by TechDogs nor should any data or content published be relied upon. The views expressed by TechDogs' members and guests are their own and their appearance on our site does not imply an endorsement of them or any entity they represent. Views and opinions expressed by TechDogs' Authors are those of the Authors and do not necessarily reflect the view of TechDogs or any of its officials. All information / content found on TechDogs' site may not necessarily be reviewed by individuals with the expertise to validate its completeness, accuracy and reliability.

Join The Discussion

- Promoted By TechDogs -

Code Climate Achieves Centralized Observability And Enhances Application Performance With Vector