What Is PostScript (PS)?

TechDogs Avatar

PostScript might be just what you need if you're looking for a language to help you communicate with the printer. PostScript is an object-oriented programming language made by Adobe Systems, which is used to provide a standard for different systems that handle page printing tasks. Printers can interpret PostScript or install extra software packages to help them solve it. The language is proprietary and only runs on a Windows operating system. PostScript is based on HP's page description language (PDL) in the 1960s. PDLs were designed to create high-quality printing jobs at a reasonable price by specifying how each page should print rather than how each page should look. It also allows printers and other devices to quickly adapt to new environments without rewriting their code for every unique situation. In 1982, Adobe released its version of PDL called PostScript, which was based on HP's original language but added some more features such as support for bitmap images and fonts (which could be used directly). It also included support for color graphics and shading effects, making it easier for users to create professional-looking documents without having any knowledge of programming languages such as C++ or Java. PostScript is so accurate because it is based on the work of John Ronald Reuel Tolkien, a professor at Oxford University and author of The Hobbit, who began his research in the 1930s. Tolkien's work focused on using a computer to draw pictures that looked like real-life objects. He wanted to create a machine that could simulate drawing by hand. He called this new way of drawing "PostScript," which stands for "Pseudo-American Standard for Information Exchange" (It's sometimes called "Permanent Structured Graphics" or P-Stamp). PostScript is a language all its own. While it's mainly used to print things, it also contains codes describing text and graphics in either black-and-white or color-compatible formats. It's more of a programming language than a printing standard because it can do much more than print what you see on the screen!

TechDogs

Related Terms by Software Development

Scanning Electron Microscope (SEM)

The scanning electron microscope combines two of the most valuable types of microscopes: They function in the same way as a standard microscope but are superior. Imagine you are looking at the very tip of your nose right now and attempting to see what's there. To get a close look at those minuscule hairs, you would need a powerful microscope, and if you squinted your eyes that intently at your face, you would probably have a headache. Imagine instead employing a scanning electron microscope, in which case the electrons would perform all the work for you. Since electrons make it possible for visual display results to have better integrity and resolution, objects can be seen more clearly and be used for cutting-edge research and engineering. You may not believe anything like this might be beneficial in regular life, but it absolutely is. We wouldn't be able to see how the tiny parts of bugs work together to form a whole, nor would we be able to see how much space there is between each atom in our bodies if we didn't have scanning electron microscopes. We would know nothing about our world if it weren't for the scanning electron microscopes that are currently in use. An electron beam is used to analyze whatever is being viewed in a scanning electron microscope, which is a type of microscope. It is also known as an SEM, and it is really interesting. The SEM traces the paths that electrons go through in an experiment. An electron gun is responsible for releasing electrons, which can be thought of as a light bulb that releases electrons rather than photons (light particles). Then, after passing through a few different components, such as scanning coils and a detector for backscattered electrons. You now possess some images obtained from the SEM! The backscattered electrons are transformed into signals and then delivered to a display screen. So as you're doing it, you're looking at photographs of your product on your computer or television screen - that's awesome!

...See More

Secure Hash Algorithm (SHA)

Secure Hash Algorithm is a set of algorithms developed by the National Institutes of Standards and Technology and other government and private parties. Cryptographic hashes (or checksums) have been used for electronic signatures and file integrity for decades. However, these functions have evolved to address some of the cybersecurity challenges of the 21st century. The NIST has developed a set of secure hashing algorithms that act as a global framework for encryption and data management systems. The initial instance of the Secure hash Algorithm (SHA) was in 1993. It was a 16-bit hashing algorithm and is known as SHA-0. The successor to SHA-0, SHA-1, was released in 1995 and featured 32-bit hashing. Eventually, the next version of SHA was developed in 2002, and it is known as SHA-2. SHA-2 differs from its predecessors because it can generate hashes of different sizes. The whole family of secure hash algorithms goes by the name SHA. SHA-3, or Keccak or KECCAK, is a family of cryptographic hash functions designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. SHA-3 competition to develop a new secure hash algorithm was held by the United States National Security Agency (NSA) in 2007. To be a super safe and fast hashing algorithm, SHA3 was developed from this contest. The evolution of cybersecurity has led to the development of several "secure hash algorithms." Security is a crucial concern for businesses and individuals in today's digital world. As a result, many types of encryption have been developed to protect data in various scenarios. One of these is hash algorithms. All secure hash algorithms are part of new encryption standards to keep sensitive data safe and prevent different types of attacks. These algorithms use advanced mathematical formulas so that anyone who tries to decode them will get an error message that they aren't expected in regular operation.

...See More

Segregated Witness (SegWit)

It is time to get this party started! SegWit is an agreement implemented in the Bitcoin cyber currency community. It is also a soft fork in the Bitcoin chain and has been widely accepted by miners and users. So what does it all mean? In short, if you are running a node (a piece of software that helps keep the Bitcoin network stable), you need to upgrade your software by April 27th, or else your node will stop working. SegWit was activated as part of a hard fork on August 24th, 2017. The most important thing to note about SegWit is that it fixes transaction malleability, which has plagued miners and users for years. However, you do not need to worry if you do not want to upgrade your software. You will still be able to use Bitcoin just fine! It is confusing, but it is not that confusing. Segregated Witness (SegWit) is a proposal to improve Bitcoin implemented in August 2017. It allows for more transactions per block, which means lower fees and faster transactions.SegWit2x is a proposal that would include a hard fork months after the initial adoption of SegWit, creating two bitcoins. One of these versions would have SegWit, and one wouldn't, but both would be called "Bitcoin" and act as separate currencies. BIP 148 is another proposal that includes a user-activated hard fork and proposes implementing SegWit.SegWit is a soft fork, not a hard fork. SegWit is a technical improvement that allows more transactions to be processed simultaneously, making the network faster and more efficient. A hard fork is when developers propose changes to the protocol. If most users accept those changes, there will be two versions of that particular cryptocurrency, one for each side. The Bitcoin Cash (BCH) chain split from Bitcoin in August 2017 as an example of a crypto hard fork. Bitcoin Cash is the result of a hard fork.

...See More